Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124318, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38663136

RESUMEN

In this work, a strategy for dynamically adjusting the upconversion luminescence (UCL) color of NaGdF4:Yb3+/Ho3+/Ce3+/Sc3+ is reported based on a phosphor wheel. It has been demonstrated that the rotation-dependent UCL mainly originated from the regulation of depletion mode for the Ho3+: 5I6 level. Due to the dominant linear decay, a high-pure red UCL is observed under the steady-state excitation. However, as the proportion of the steady-state excitation decreases, the green-red emission intensity ratio gradually increases, followed by the color conversion from red to green. An approximate physical model is proposed to understand the dependence of IG/IR on rotation speed. We not only report a UCL material that shows potential application in velocity sensing but also provide new insights into wheel-based dynamic UCL regulation.

2.
Opt Express ; 29(23): 37907-37916, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808854

RESUMEN

The determination of chirality of circularly polarized light (CPL) is of great significance to the development of various optical techniques. In this paper, a miniature circular polarization analyzer (CPA) based on surface plasmon polariton (SPP) interference is proposed. The proposed CPA consists of a micron scale long sub-wavelength slit and two groups of spatially arranged periodic sub-wavelength rectangular groove pairs, which are etched in a metal layer. Under the illumination of a CPL with a given chirality, the proposed CPA is capable of forming SPP-mediated interference fringes with different periods in far field. The chirality of CPL can be directly and quantitatively differentiated by the frequency value of the far field SPP-mediated interference fringes. Different from the existing SPP-based CPAs, the proposed CPA can directly image the chirality information in far field, avoiding near-field imaging of the SPP field.

3.
Nanomaterials (Basel) ; 9(10)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561461

RESUMEN

Controlling the shape and trajectory of the surface plasmon polariton (SPP) beams is the key to all SPP-based applications. In this paper, a novel plasmonic device that can generate in-plane flat top SPP beams is designed by near field holography. The relationship between the transverse profile intensity of the generated flat top SPP beams and the structural parameters of the designed device is analyzed. The results of this paper can provide the possibility for further practical application utilizing flat top SPP beams.

4.
Nanomaterials (Basel) ; 8(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30486268

RESUMEN

Realizing multiple beam shaping functionalities in a single plasmonic device is crucial for photonic integration. Both plasmonic Bessel-like beams and bottle beams have potential applications in nanophotonics, particularly in plasmonic based circuits, near field optical trapping, and micro manipulation. Thus, it is very interesting to find new approaches for simultaneous generation of surface plasmon polariton Bessel-like beams and bottle beams in a single photonic device. Two types of polarization-dependent devices, which consist of arrays of spatially distributed sub-wavelength rectangular slits, are designed. The array of slits are specially arranged to construct an X-shaped or an IXI-shaped array, namely X-shaped device and IXI-shaped devices, respectively. Under illumination of circularly polarized light, plasmonic zero-order and first-order Bessel-like beams can be simultaneously generated on both sides of X-shaped devices. Plasmonic Bessel-like beam and bottle beam can be simultaneously generated on both sides of IXI-shaped devices. By changing the handedness of circularly polarized light, for both X-shaped and IXI-shaped devices, the positions of the generated plasmonic beams on either side of device can be dynamically interchanged.

5.
Nanomaterials (Basel) ; 8(11)2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405091

RESUMEN

Defect-induced tunable permittivity of Epsilon-Near-Zero (ENZ) in indium tin oxide (ITO) thin films via annealing at different temperatures with mixed gases (98% Ar, 2% O2) was reported. Red-shift of λENZ (Epsilon-Near-Zero wavelength) from 1422 nm to 1995 nm in wavelength was observed. The modulation of permittivity is dominated by the transformation of plasma oscillation frequency and carrier concentration depending on Drude model, which was produced by the formation of structural defects and the reduction of oxygen vacancy defects during annealing. The evolution of defects can be inferred by means of X-ray diffraction (XRD), atomic force microscopy (AFM), and Raman spectroscopy. The optical bandgaps (Eg) were investigated to explain the existence of defect states. And the formation of structure defects and the electric field enhancement were further verified by finite-difference time domain (FDTD) simulation.

6.
Materials (Basel) ; 11(11)2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404174

RESUMEN

We designed an ultra-thin dual-band metamaterial absorber by adjusting the side strips' length of an H-shaped unit cell in the opposite direction to break the structural symmetry. The dual absorption peaks approximately 99.95% and 99.91% near the central resonance frequency of 4.72 THz and 5.0 THz were obtained, respectively. Meanwhile, a plasmon-induced transmission (PIT) like reflection window appears between the two absorption frequencies. In addition to theoretical explanations qualitatively, a multi-reflection interference theory is also investigated to prove the simulation results quantitatively. This work provides a way to obtain perfect dual-band absorption through an asymmetric metamaterial structure, and it may achieve potential applications in a variety of fields including filters, sensors, and some other functional metamaterial devices.

7.
Opt Express ; 26(8): 9772-9783, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29715923

RESUMEN

Dynamic tailoring of the propagating surface plasmon polaritons (SPPs) through incident angle modulation is proposed and numerically demonstrated. The generation and tailoring mechanism of the SPPs are discussed. The relationship formula between the incident angle and the generated SPP wave vector direction is theoretically derived. The correctness of the formula is verified with three different approaches using finite difference time domain method. Using this formula, the generated SPP wave vector direction can be precisely modulated by changing the incident angle. The precise modulation results of two dimensional Bessel-like SPP beam and SPP bottle beam array are given. The results can deepen the understanding of the generation and modulation mechanism of the SPPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...